Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator's straight-line example
نویسندگان
چکیده
In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index. In addition, the repetitive-motion-planning scheme could incorporate the joint physical limits such as joint limits and joint velocity limits simultaneously. Such a scheme is finally reformulated as a quadratic program (QP). As QP real-time solvers, the aforementioned three kinds of neural networks all have piecewise-linear dynamics and could globally exponentially converge to the optimal solution of strictly-convex quadraticprograms. Furthermore, the neural-network based RMP scheme is simulated based on a four-link planar robot manipulator. Computer-simulation results substantiate the theoretical analysis and also show the effective remedy of the joint angle drift problem of robot manipulators. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملMotion detection by a moving observer using Kalman filter and neural network in soccer robot
In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...
متن کاملOptimal Load of Flexible Joint Mobile Robots Stability Approach
Optimal load of mobile robots, while carrying a load with predefined motion precision is an important consideration regarding their applications. In this paper a general formulation for finding maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile, overturning stability of the system and precision of the motion on the given end-effector trajectory are take...
متن کاملRedundant Inverse Kinematics System for Obstacles Avoidance
In this paper the authors relate to the robotic systems to avoid the obstacles while positioning end-effectors. A new strategy to on-line collision-avoidance of the redundant robots with obstacles is presented. The strategy allows the use of redundant degrees of freedom such that a manipulator can avoid obstacles while tracking the desired endeffectors trajectory. The strategy is based on the r...
متن کاملA New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots
This paper presents a new intelligent method to control rehabilitation robots by mainly considering reactions of patient instead of doing a repetitive preprogrammed movement. It generates a general reference trajectory based on different reactions of patient during therapy. Three main reactions has been identified and included in reference trajectory: small variations, force shocks in a single ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 57 شماره
صفحات -
تاریخ انتشار 2009